

Persuading Voters

(Ricardo Alonso-Odilon Amara('16))

Presenter: Renjie Zhong
2020200977@ruc.edu.cn

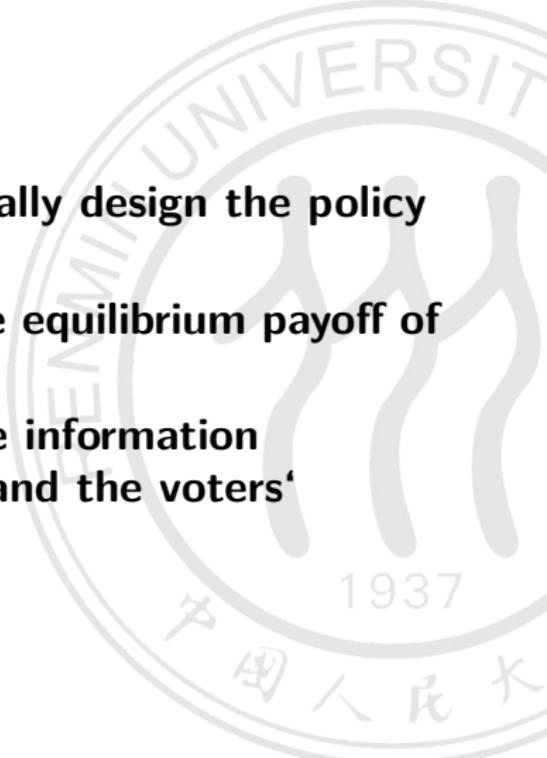
Renmin University of China

September 2022

- Information is the cornerstone of democracy.
- Often it is provided by a third party.
- The third party (politician) can increase the probability of approval **by strategically designing information.**

		states		
		a	b	c
voters		A	+1.1	-1
		B	-1	+1.1
	C	-1	-1	+1.1

Table 1: Payoffs from Approving the Proposal.



- ① How does the politician **strategically design the policy experiment?**
- ② How do the voting rules shape **the equilibrium payoff of voters?**
- ③ How do the voting rules affect **the information provision (with commitment) and the voters' welfare?**

Applications

- Voting for Public Goods
- Promotion
- Democracy Politics
- Corporate Governance

- ① Under a **simple-majority rule**, the politician's influence always makes a majority of voters **weakly worse off**.
- ② This negative influence can happen even when voters' preferences are very **aligned**.
- ③ Voters face a trade-off between **control and information**.
- ④ When their preferences are aligned, each voter has **single-peaked preferences** over k-voting rules and even prefers **unanimity** over any other k-voting rule

① **Information Design: Multiple Receivers in A Game**

- Ionso and C'amara (2016), Michaeli (2014), Taneva (2014) and Wang (2013)

② **Institution rule endogenously affects the information**

- Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1996) and Jackson and Tan (2013)

- $n \geq 1$: voters
- $X = \{x_1, x_0\}$: two alternatives
- Θ : finite state space with $\theta_i < \theta_{i+1}$ for all $i \in \{1, 2, \dots, T\}$ and $T \geq 2$
- $p = (p_\theta)_{\theta \in \Theta} \in \Theta$: common prior belief
- $u_i(x, \theta), u_i : X \times \Theta \rightarrow \mathbb{R}$: voters payoff function
- $\delta = (\delta_\theta^i)_{\theta \in \Theta} = (u_i(x_1, \theta) - u_i(x_2, \theta))_{\theta \in \Theta}$: the voters type

① Politician

- Payoff function: $V(x_1, \theta) = 1$ and $V(x_0, \theta) = 0$ for all θ
- Policy experiment;
 - ① commits to public experiment $\pi = \pi(\cdot | \theta)$
 - ② finite realization space S : $\pi(\cdot | \theta) \in \Delta(S)$
(Let $q = q(s|\pi.p)$ be the updated posterior belief of voters)

② Voting Rules

- Proposal x_1 is selected iff it receives at least k votes, where $k \in \{1, 2, \dots, n\}$ is the established electoral rule.

The Model: Equilibrium Selection

- i 's expected net payoff from implementing the proposal:
 $\langle q, \theta \rangle = \sum_{\theta \in \Theta} \delta_\theta q_\theta \geq 0$
- optimal voting strategy: $a(q, \theta) = 1$ if $\langle q, \theta \rangle \geq 0$ and
 $a(q, \theta) = 0$ if $\langle q, \theta \rangle < 0$
where $a : \Delta(\Theta) \times R^n \rightarrow \{0, 1\}$
- Politician's problem: maximize $E_\pi[v(q)] \Leftrightarrow$ maximize $Pr(\text{Approval})$

The Model: A Formal Definition of the Aligned Preference

- δ^i and δ^j rank states in the same order:
for every pair $\theta, \theta' \in \Theta$, we have $\delta_\theta^i > \delta_{\theta'}^i \Leftrightarrow \delta_\theta^j > \delta_{\theta'}^j$
- δ^i and δ^j agree under full information:
for every $\theta \in \Theta$, we have $\delta_\theta^i \geq 0 \Leftrightarrow \delta_\theta^j \geq 0$

The Model: Other Definitions

- policy implementation brings payoff δ_θ^i to voter i under state θ
- the win set: $W_k = \{q \in \Delta(\Theta) \mid \sum_{i=1}^n a(q, \theta_i) \geq k\}$
- the set of approval states: $D(\theta) = \{\theta \in \Theta \mid \delta_\theta \geq 0\}$
- the set of approval beliefs: $A(q) = \{q \in \Delta(\Theta) \mid \langle q, \theta \rangle \geq 0\}$
- the set of strong rejection beliefs: $R(q) = \{q \in \Delta(\Theta) \mid \theta \in D \Rightarrow q(\theta) = 0\}$
- all coalitions containing at least $n - k + 1$ voters: B
- the set of strong rejection beliefs (with a coalition): $R_k = \bigcup_{b \in B} \bigcap_{\delta \in b} R(\delta)$

Dictator: the Optimal Experiment

- If $p \in A(p)$, no need to run an experiment

- **Proposition:**

So suppose that $p \notin A(p)$ and $W \neq \phi$. An optimal π involves $\{s^+, s^-\}$, where s^+ induces posterior $q^+ \in A(q)$ while s^- induces posterior $q^- \in R(\delta)$. q^+ and q^- satisfies:

- ① $q^+, q^- \max \frac{\|q^- - p\|}{\|q^+ - p\|}$

- ② q^+, q^-, p are collinear (Bayes Plausibility)

- Then the equilibrium approval probability:

$$\Pr(\text{Approval}) = \frac{\|q^+ - p\|}{\|q^- - p\| + \|q^+ - p\|}$$

- **Intuition** (Figure $|\Theta| = 3$)

- ① π max approval probability
 $\Leftrightarrow \pi \max q^+$
 $\Leftrightarrow q^+$ is more "closer" to p while q^- is more "further" away from p
- ② Collinearity: Bayes Plausibility implies that p is the convex combination of q^+ and q^-

Dictator: the Optimal Experiment

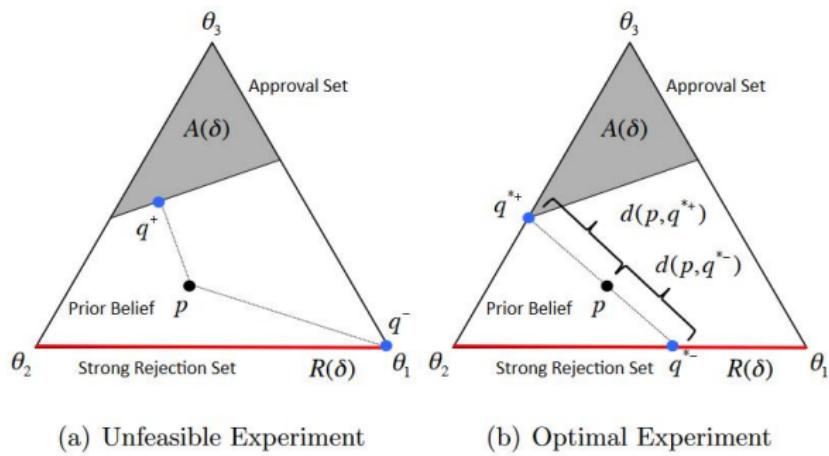


Figure 1: Simplex Representing the Beliefs of Dictator δ , with $\delta_{\theta_3} > 0 > \delta_{\theta_2} > \delta_{\theta_1}$

- **Proposition:**

There exists a θ^* such that, for every optimal experiment:

- ① the voter approves for any δ_θ if $\delta_\theta > \delta_{\theta^*}$
- ② the voter rejects for any δ_θ if $\delta_\theta > \delta_{\theta^*}$
- ③ Indifference: the dictator is indifferent to approval and rejection

- **Intuition:** the politician bundles the rejection states with the smallest incremental loss, i.e the smallest $|\delta_\theta|$

- if $p \in co(W_k)$, then it is easy to run an experiment to successfully persuade the voters
- Suppose $p \notin co(W_k)$ and $W_k \neq \emptyset$.
- **Proposition:**
An optimal π^* involves running π_1 followed by π_2 that induce the following $\tau_1, \tau_2 \in \Delta(\Delta(\Theta))$:
 - ① $supp(\tau_1) = \{q^-, q^+\}$, s.t. $\tau_1 q^+ + (1 - \tau_1) q^- = p$
 - $q^+ \in co(W_k)$
 - q^- s.t. at least k voters believe that $Pr[\delta_\theta^i < 0] = 1$
 - $q^+, q^- \max \frac{||q^- - p||}{||q^+ - p||}$
 - ② $supp(\tau_2) \in W_k$ and $E_{\tau_2}[q] = q^+$
- **Intuition:** think of $co(W_k)$ as a single receiver and τ_2 is for forming the coalition

k -voting rule: Optimal Experiment

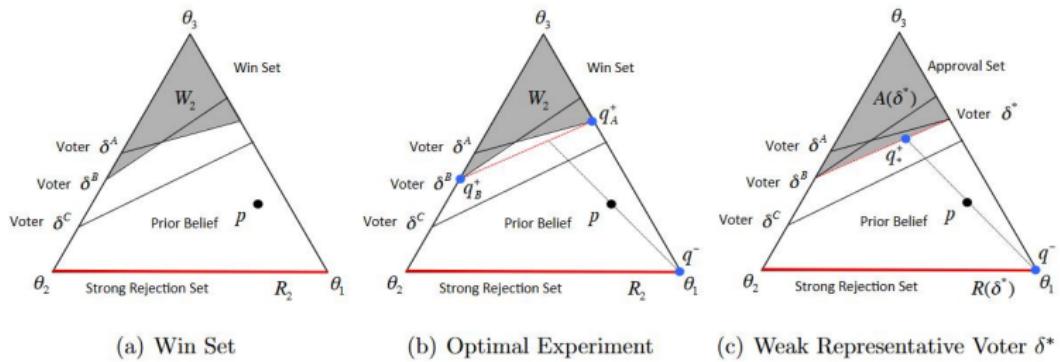


Figure 2: Optimal Experiment for Example 2

- let $u_k^i(p)$ be i 's payoff without any π
- let $u_k^i(\pi^*)$ be i 's payoff with π^*
- **Proposition:**
 - ① If $k = n$, then $u_k^i(\pi^*) \geq u_k^i(p)$
 - ② If $k < n$, then $u_k^i(\pi^*) \geq u_k^i(p)$ for at most $k - 1$ voters, while $u_k^i(\pi^*) \leq u_k^i(p)$ for at least $n - k + 1$ voters.
And these at least $n - k + 1$ voters are strictly worse off if no optimal π^* satisfies $Supp|\pi^*| = 2$
- **Intuition:**
 - ① Choose a less informative experiment to strictly increase the probability of approval.
 - ② No optimal experiment with only two realizations implies the politician must be targeting different winning coalitions.
- **Corollary:** If $p \notin W_{\frac{n+1}{2}}$, then a majority of voters prefer unanimity over simple majority.

- **Prposition:**

Suppose all voters rank in the same order, then they have single peaked preference over $k(\theta)$:

The voter's expected utility is non-decreasing in k , for $k(\theta) > k$, while non-increasing for $k(\theta) < k$

- **Intuition:** Considering the cutoff state

- **Proposition:**

- Suppose all voters:
 - ① rank states in the same order
 - ② agree under full information
- Then, every voter weakly prefers a $k + 1$ -voting rule to a k -voting rule, for $k \in \{1, 2, \dots, n\}$.
- Consequently, every voter weakly prefers unanimity over any other k -voting rule.

- **Intuition:**

- - ① θ_k^* is the same cut-off state for all voters
 - ② All voters view the weak representative voter as too easy to persuade and, thus, prefer a higher k rule.

- Controller knows the State
- Controller's Payoff Depends on the State
- Preference Shocks
- Heterogenous Prior Beliefs
- Optimal Endorsement: Another Interpretation

